AQUAFITNESS FOR OLDER ADULTS? YOU BET!

Submitted by Elizabeth Fox, P.T., Aquatic Therapist, CALA Certified, CALA Presenter – CALA Conference 2002.

Age-related changes in physical function affecting older water exercisers.

Parameter	Changes with Aging	Effects of Water Exercise
Muscular Strength	 Declines by ~1.5% per decade after age 60 Number of motor units and muscle fibres decrease Type II (fast twitch) fibre size decreases Total muscle CSA decreases by ~10% after age 50 	 Isometric and isokinetic strength gains Functional ability improves
Muscular Endurance	 Muscular endurance capacity similar to young adults Ability to carry absolute load over time decreased Post-exercise recovery time increased 	 Improved capacity to perform repeated joint actions per second

and work capacity in older

• Decreased resting HR in older

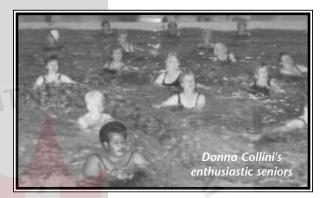
participants

Christmas 2001 - hats and sea Judy Laughton & her 60-		
Bone Density	 Bone loss of 0.3 - 0.5% per year after 3rd and 4th decade Men only lose 2/3 of bone mass lost by women Bone loss can develop into Osteoporosis 	 Muscular traction provided by water resistance may increase bone density Buoyancy eliminates high- impact stresses contraindicated for fragile bones but provides low-impact aerobic workout
Cardiovasular Endurance	 VO₂ max decreases ~10% per decade HRmax decreases approx 1 beat/year Stroke volume max decreases Decreased cardiac output occurs as a function of decreased HR 	 Water walking HR at min of 147 bpm sufficient to maintain CV fitness in young individuals Improved VO₂ and HR with water exercise comparable to training effects on land Increased VO₂ max, HRmax,

and stoke volume

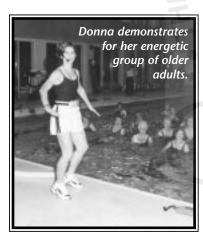
Balance, Proprioception and

Reaction Time


- Neurological changes contribute to muscle atrophy
- 35% decreased number of spinal cord axons
- 10% decrease in nerve conduction velocity

Changes with Aging

- Sensory and proprioception deficits
- Reaction times slows
- Osteoarthritis contributes to balance deficits


- Improved static postural sway measures
- Dynamic balance may also improve based on improved gait characteristics and speed
- Reaction time decreased

Osteoarthritis

- Degenerative changes restrict joint movement, impair balance, cause pain, and restrict activity
- Improved psycho-social well being
- Decreased adverse joint reactions
- Improved strength and ROM
- Improved gait
- Decreased pain

The information on this table on age-related changes in physical function and the reported benefits of water exercise programs for older people is adapted with permission from Lindsay et al, 2000. CSA = cross sectional area; HRmax = maximal heart rate; VO₂max = maximal oxygen uptake

References:

- 1. American college of Sports Medicine. Exercise and physical activity for older adults. Med Sci Sports Exerc 1996: 30(6):992-1008.
- 2. Krishnathason D, Vandervoort AA. Eccentric training prescription for older adults. Top Geriatr Rehabil 2000: 15:29-40.
- 3. Lexell J. Aging and human skeletal muscle: observations from Sweden. Can J Appl Physiol 1993: 18:2-18.
- 4. Porter MM, Vandervoort AA, Lexell J. Aging of human muscle: structure, function and adaptability. Scan J Med Sci Sports 1995: 5:29-142.
- 5. Ruoti RG. The effects of calisthenic water exercise on selected work, physiological and blood parameters of older adults. Unpublished doctoral dissertation, Temple University, Philadelphia.
- 6. Sanders ME, Constantino NL, Rippee NE et al. A comparison of results of functional water training on field and laboratory measures in older women [abstract]. Med Sci Sports Exerc 1997: 29(5) Suppl:S110.
- 7. Sanders ME, Maloney-Hills C. Aquatic exercise for better living on land. ACSM's Health Fitness J 1998: 2(3):16-23.